Suitable for 48V and below:

- Frame type communication lithium battery
- ♦ Communication station
- ♦ Micro network storage
- ♦ UPS, etc

Lithium battery management board

BMB01-16S16T2A /BPB01-10A/BPB01-50A

Shenzhen klclear technology co., ltd.

Before use this product, please be sure to pay attention to the following items:

- 1, installation and before use, please read the corresponding instructions and instruction manual;
- 2, the installation of the product battery can be parallel to use, but not series use, there are damage danger!

Preface:

As lithium battery application industry development, for lithium battery management system needs more and more high. BMB02-16S16T2A and switching board is specially for sixteen series and under static lithium battery equipment development management board, in addition to basic voltage acquisition, temperature acquisition, current collection and the corresponding protection outside, also provides maximum 500mA active equilibrium, intelligent communication interface and display, etc. Widely used in the following situations.

Micro network storage

Communication station

Frame type communication lithium battry

UPS

1, collection equilibrium board specification parameter specification

1.1 acquisition equilibrium board BMB02-16S16T2A function parameters description

Project	parameters	default value	note
Monomer voltage	collection series	number 16	series 8 ~ 16 series can be set
acquisition function	acquisition error	<5mV	typical value under 25 °C
	protection value	3600mV (after protection stop charging)	3300~4200mV can be set
Monomer battery	protection time delay	0.5\$	0.1∼60.0Scan be set
overcharge protection value	recovery value	3450mV	2900~4000mV can be set
	recovery time delay value	5S(support reverse current immediately reset)	0.1~3000.0S can be set
	protection value	2800mV (after protection stop discharging)	2400~3700mV can be set
Monomer battery	protection time delay value	0.1S	0.1∼60.0S can be set
under-voltage protection	recovery value	2950mV	2900~3800mV can be set
value	recovery time delay value	5S(support reverse current immediately reset)	0.1~3000.0S can be set
	voltage differential alarm	150mV (transfinite alarm not only cut off)	20~2000mV can be set
Managananialtana	equilibrium principle	Energy transfer type active equilibrium	Whole process
Monomer voltage balance function	equilibrium start threshold	±10mV	$10{\sim}500$ mV can be set
Salarios farioasir	maximum equilibrium current	500mA	
Monomer temperature	detection points	4	0∼16 points can be set
acquisition	collection error	<1.5℃	
	protection value	65°C (after protection stop charging& discharging)	10∼70°C can be set
Monomer thermal	time delay value	0.5\$	0.1∼60.0S can be set
protection value	recovery value	56℃	10∼65°C can be set
	recovery time delay value	5S	0.1∼3000.0S can be set
Monomer low	protection value	-10°C (after protection stop charging)	-35∼0°C can be set

temperature	time delay value	2.0\$	0.1∼60.0S can be set
	recovery value	0°C	-5∼30℃ can be set
	recovery time delay value	2.0S(support reverse current immediately reset)	$0.1{\sim}3000.0$ S can be set
	interface number	1	0.1 0000.00 001150 001
Battery current sampling	accuracy	0.5%	
shunt	resistance	500μΩ	$10{\sim}5000$ u Ω can be set
	signal range	-100~100mV	10 0000 022 0011 00 001
	protection value	25A (after protection stop charging)	$1{\sim}900$ A can be set
Battery charging current	time delay value	0.5 S	$0.1{\sim}60.0{ m S}$ can be set
sampling and protection	recovery value	15A	$1{\sim}900$ A can be set
function	recovery time delay value	10S(support reverse current immediately reset)	$0.1\sim$ 3000.0S can be set
	protection value	-50A (after protection stop discharging)	-1500∼0A can be set
Battery discharging	time delay value	0.5S	$0.1\sim60.0$ S can be set
current protection	recovery value	-25A	-1500∼0A can be set
function	recovery time delay value	10S(support reverse current immediately reset)	$0.1{\sim}3000.0\mathrm{S}$ can be set
	protection value	100A(stop discharging after the short circuit current more than 100A protection,)	$1{\sim}2400$ A can be set
Battery short circuit	time delay value	10mS	Fixed value
protection function	recovery value	10S(after recovery if still a short circuit will be automatically extended for the next recovery time)	0.1∼600.0S can be set
Battery total voltage acquisition	acquisition error	<0.1V	Collection scope 10∼80V
	protection value	57.6V (after protection stop charging)	15.0∼65.0V can be set
Battery total	time delay value	1.5\$	$0.5{\sim}60.0{ m S}$ can be set
over-voltage protection function	recovery value	55.0V	15.0∼65.0V can be set
	recovery time delay value	10S(support reverse current immediately reset)	$0.1{\sim}3000.0\mathrm{S}$ can be set
5	protection value	43.2V (after protection stop discharging)	15.0∼65.0V can be set
Battery total	time delay value	1.5\$	$0.5{\sim}60.0{ m S}$ can be set
under-voltage protection function	recovery value	46.0V	15.0∼65.0V can be set
	recovery time delay value	10S(support reverse current immediately reset)	0.1 \sim 3000S can be set
	protection value	10% (transfinite alarm not only cut off)	1% \sim 100% can be set
Battery SOC protection	time delay value	1.0\$	$0.1{\sim}60.0$ S can be set
function	recovery value	15%	1% \sim 100% can be set
	recovery time delay value	1.0S	$0.1{\sim}3000$ S can be set
Sleep function	time delay value	60S	$1\sim 3000 {\rm S}$ can be set, Battery discharge protection will delay into dormancy mode
	Batch charging function	Support four phase intermittent charging	
Other function	Failure self-check function	Can be online automatic detection protection switch failure, the current collection wire failure,	

Page 3

	temperature acquisition wire failure, the battery	
	voltage acquisition line wire failure	

1.2 acquisition equilibrium board BMB02-16S16T2A hardware interface description

Project	interface name	interface specification	note
	BMB board communication interface	RJ45 interface (including RS485, CAN, fault dry contact interface)	Through the RS485 interface can external display, communication protocol conform to the
The user interface	Run , error lamp	The green operation, red light said hardware fault	YD_T1363. 3 standard requirement, the default baud rate 9600 BPS, the default address 244
	SOC lamp	indication battery SOC (points 4 level display)	
	switch	start-up, shutdown and awakening sleep switch	
monomer voltage and temperature	16 series collection equilibrium line interface	consists of two terminal composition	9 pin terminal for low end, 8 pin terminal for high end
acquisition interface	16 channel temperature interface	consists of two terminal composition	each terminal acquisition no.8 temperature
	charge relay dry contact	Normally open	2A/30V or 0.5A/60V
	Discharge relay dry contact	Normally open	2A/30V or 0.5A/60V
protection switch board interface	protection switching board drive voltage interface	12V drive power	
board interrace	total pressure acquisition interface	2 channel	independent 2 channel
	shunt interface	1 channel	
	system board maximum size	34mm*294mm*30mm(high*wide*deep)	
Structure size	system board maximum weight	100g	
	system board placed way	Front panel installation	
working	Working environment temperature range	-20°C ∼+55°C	
environment requirements	maximum working temperature rise	<30℃	

2, the protection switching board specification parameters description

2.1 protection switching board

interface specification	BPB01-48V10A	BPB01-48V50A	48V200A relay
Shunt interface	1	1	1
total voltage testing interface	1	1	1
MOS tube driving interface	2	2	2
rated discharge work current value	10A	50A	200A
maximum discharge work current value	10A	50A	200A
allow maximum charging work current value	10A	50A	200A
Over current protection value (can be made of superior machine Settings)	10A	50A	200A
size	82mm*34mm	68mm*115mm	see chart

3, system installation instructions

3.1, system principle

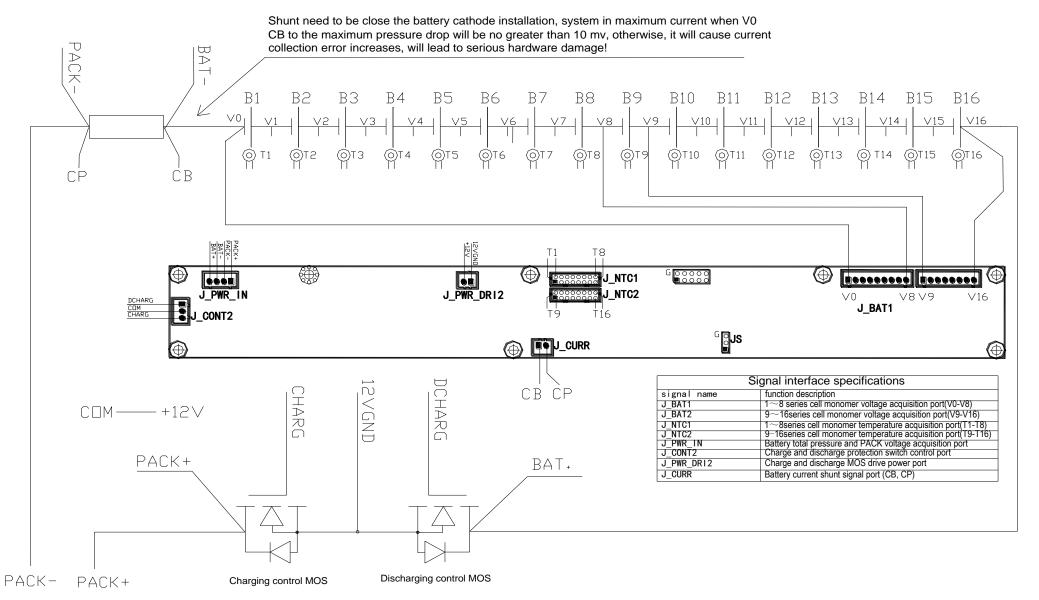


Figure 1 System diagram

Note: BMS board for electrostatic sensitive products, assembly site must be equipped with necessary electrostatic protective equipment, such as electrostatic floor, electrostatic clothing, electrostatic wrist equipment!

3.2, collection equilibrium board installation instructions:

acquisition equilibrium board (hereinafter referred to as BMS board) internal use high precision active equilibrium chip, the user terminal order have strict requirements, in the connection, startup, shutdown and take out stitches process must be in strict accordance with the standard operation, otherwise it may cause permanent damage to the hardware. The correct operation steps are as follows:

- 3.2.1 this BMS board are not supplied with a shell, in installation and debugging BMS board must be first will set in battery PACK on the front panel, prevent the debugging process BMS board and metal conductor short-circuit and board device stress damage, take put BMS board must be hands master BMS board ends, it is strictly prohibited to single hand fibrillation BMS board! Fixed BMS board first preloaded screw, upon confirmation of light, button, RJ485 is correct para after the matter all screw.
- 3.2.2 will J_BAT1 and J_BAT2 plug on 17 root monomer voltage acquisition line and battery connection, in the connection monomer voltage acquisition line must be disconnected before collecting line and BMS board J_BAT1 and J_BAT2 socket connection, according to the diagram 1 and battery connection, connection after the completion of using a multimeter to check plug the voltage is correct, when confirmed to the next step.

Note: there were still not to be J_BAT1 and J_BAT2 plug to BMS board!

- 3.3, protection switching board installation instructions
- 3.3.1 will protect switch board (hereinafter referred to as switching board) and battery connection, namely connection PACK, PACK -, BAT, BAT -, when confirmed to the next step.
- 3.3.2 will figure 2, the J_PWR_IN J_PWR_DRI2, J_CONT2, J_CURR plug according to graphic connection, when confirmed to the next step.
- 4, system debugging steps
- 4.1 test connection in figure 2 shows connection mode, check the terminal on the signal wire connection is correct, special inspection cell monomer voltage acquisition line and shunt connecting line is correct, according to the following sequence connection: insert J_CURR shunt acquisition line plug 1 → insert 8 pin of the J_BAT2 monomer voltage acquisition line plug 2→ insert 9 pin of the J_BAT1 monomer voltage acquisition line plug → into other connecting wire, as below:

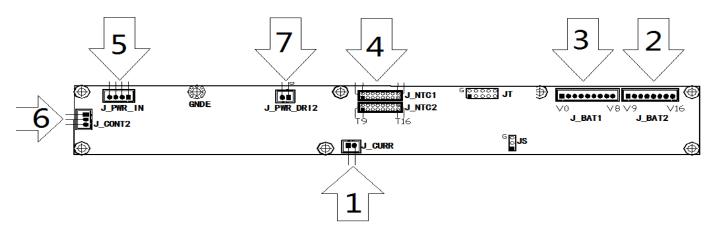


Figure 2 BMS board connection sequence diagram

Note: J_PWR_DRI2 terminal and J_CURR terminal appearance the same (line mark different), beware of plug wrong, plug will lead to wrong BMS plate damage!

4.2 ,on test

- **4.2.1**, if PACK end no power supply (not rechargeable machine), need to manually boot, press the switchmachine button after about 1 s to loosen, the BMS board would immediately power on and start self-checking, display SOC part blink, about 4 s self after completion, BMS into normal operation mode, running lights flickered on, SOC light display the current battery residual capacity.
- **4.2.2**,Use debugging terminal software to check out the battery charging and discharging current is correct, monomer voltage whether display correctly, battery total pressure whether display correctly, battery temperature whether display correctly, when confirmed can charge and discharge test.
- **4.2.3** Holdings use charger to recharge the battery, when any monomer voltage more than "monomer battery overvoltage protection value", the BMS plate will automatically cut off charging circuit, when all monomer voltage are below the "monomer battery overvoltage protection recovery value" to delay "monomer battery overvoltage protection recovery time delay value", charging circuit will connect, the battery can continue to charge.
- 4.2.4 use load to the battery discharge, when any monomer voltage is lower than "monomer battery under-voltage protection value", the BMS board will

automatically cut off the discharge circuit, when all monomer voltage is higher than the "monomer battery under-voltage protection recovery value" to delay "monomer battery under-voltage protection recovery time delay value", the discharge circuit will connect, the battery can continue to discharge.

4.2.5 BMS in the operation process of the detected any protection action or failure, through the light hint, the users for troubleshooting, indicating that the information through the SOC light display, in the system trouble-free, SOC lamp always display of the battery SOC, and when something protection action or failure, RUN in light up SOC light display system SOC, RUN in the lights went out, SOC light display system alarm code, detailed definition are shown below:

■ LED light, LED ○ said put out, ★LED blink (namely LED light out in between alternate change)

System	SOC	SOC	SOC	SOC	ERR	RUN	Information definition	
status	10%	30%	60%	90%	status	status		
Normal	0	0	0	0	0	*	System battery residual capacity <10%	
Normal	•	0	0	0	0	*	System battery residual capacity ≥ 10%	
Normal	•	•	0	0	0	*	System battery residual capacity ≥ 30%	
Normal	•	•	•	0	0	*	System battery residual capacity ≥ 60%	
Normal	•	•	•	•	0	*	System battery residual capacity ≥ 90%	
Protection	0	0	0	0	0	•	System battery residual capacity <10%	
Protection	•	0	0	0	0	•	System battery residual capacity ≥ 10%	
Protection	•	•	0	0	0	•	System battery residual capacity ≥ 30%	
Protection	•	•	•	0	0	•	System battery residual capacity ≥ 60%	
Protection	•	•	•	•	0	•	System battery residual capacity ≥ 90%	
Protection	0	0	0	*	0	0	System in monomer overvoltage protection state	
Protection	0	0	*	0	0	0	System in monomer undervoltage protection state	
Normal	0	0	*	*	0	0	System in cell monomer pressure differential transfinite alarm	
							state	
Protection	0	*	0	0	0	0	System in battery total pressure overvoltage protection state	
Protection	0	*	0	*	0	0	System in battery total pressure underrvoltage protection state	
Protection	0	*	*	0	0	0	system in monomer thermal protection state	
Protection	0	*	*	*	0	0	System in monomer low temperature protection condition	
Protection	*	0	0	0	0	0	System is in charge over current protection condition	
Protection	*	0	0	*	0	0	System in the discharge over-current protection state	
Protection	*	0	*	0	•	0	System is in short circuit protection state	
Protection	*	0	*	*	•	0	System appear internal communication error	
Protection	*	*	0	0	•	0	system MOS fault	
Protection	*	*	0	*	•	0	system temperature gathering line break fault	
Protection	*	*	*	0	•	0	system current gathering line break fault	
Protection	*	*	*	*	•	0	system cell monomer voltage acquisition line break fault	
Protection	•	•	•	*	•	0	system MOS switching state anomaly	
Protection	•	•	*	*	•	0	system current sensor anomaly	
Normal	•	*	•	•	•	0	SOC system low	

4.3 closed system

in battery transportation or the need to be closed before the BMS board, in order to reduce the storage system power consumption, press the switch machine button about 3 seconds, panel four SOC light and RUN lamp also began to fast scintillation (cycle about 0.2 S), now can loosen the button, the BMS into the shutdown process, in the shutdown process, the BMS board first will close charging and discharging protection switch, and then will internal circuit set to low power consumption mode, the process will be closed after the completion of their own power, all instructions will put out, thus complete shutdown process.

4.4 pull plug signal wire operation

any time need to pull plug BMS plate when the signal wire must, in accordance with 4.3 steps shutdown operation, only to correct shutdown operation, pull plug BMS signal wire is safe, otherwise it may cause BMS plate serious damage, it is strictly prohibited to pull through direct signal power off! If the signal lines drawn before the BMS cannot confirm whether a correct shutdown operation, please first according to 4.2 process boot, and then according to 4.3, the shutdown operation, the BMS plate after shutdown order take out stitches as below.

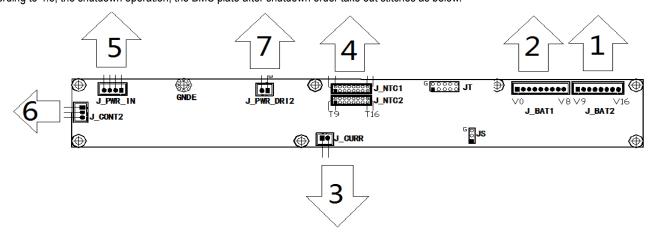


Figure 3 BMS board take out stitches sequence diagram

5, system list

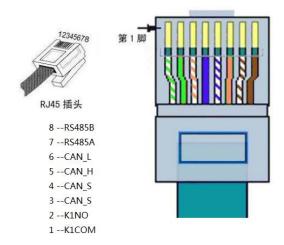
5.1 10A and the following current

code	description	type	number	note
01021001	BMS acquisition equilibrium board	BMB01-16S16T2A	1	Active equilibrium
01021002	BMS 10A protection switching board	BPB01-10A	1	
	current signal wire - 2 pin / 300 mm/AWG22	CUUR	1	
	drive power wire - 2 pin / 200 mm/AWG22	PWR-DRI	1	
	voltage signal wire - 4 pin / 200 mm/AWG22	JPWR	1	
	drive signal wire - 3 pin / 300 mm/AWG22	CONT	1	
	acquisition equilibrium line - 9pin /1000mm/AWG22 /OT6.0	JBAT1	1	To your pressure OT
	acquisition equilibrium line - 8pin /1000mm/AWG22 /OT6.0	JBAT2	1	terminal
	Temperature gathering line - 4pin /1000 mm/AWG22 /OT6.0	JNTC1	1	The default four point
handbook	Handbook for BMB02-16S16T2A	V3.1	1	PDF

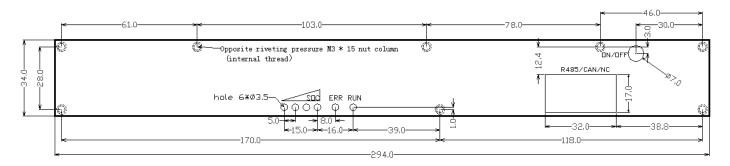
5.2 50A and the following current

code	description	type	number	note
01021001	BMS acquisition equilibrium board	BMB01-16S16T2A	1	Active equilibrium
01021002	BMS 10A protection switching board	BPB01-10A	1	
	current signal wire - 2 pin / 300 mm/AWG22	CUUR	1	
	drive power wire - 2 pin / 200 mm/AWG22	PWR-DRI	1	
	voltage signal wire - 4 pin / 200 mm/AWG22	JPWR	1	
	drive signal wire - 3 pin / 300 mm/AWG22	CONT	1	
	acquisition equilibrium line - 9pin /1000mm/AWG22 /OT6.0	JBAT1	1	To your pressure OT

	acquisition equilibrium line - 8pin /1000mm/AWG22 /OT6.0	JBAT2	1	terminal
	Temperature gathering line - 4pin /1000 mm/AWG22 /OT6.0	JNTC1	1	The default four point
handbook	Handbook for BMB02-16S16T2A	V3.1	1	PDF


5.3 200A and the following current

code	description	type	number	note
01021001	BMS acquisition equilibrium board	BMB01-16S16T2A	1	Active equilibrium
11010034	Dc contactor - normally open	24VDC-200A	1	
17030001	fuse	660-315A	1	
03040003	shunt	FL2-200A-75mV	1	
	case B and connecting wire harness	BMB-ZB	1	
	acquisition equilibrium line - 9pin /1000mm/AWG22 /OT6.0	JBAT1	1	To your pressure OT
	acquisition equilibrium line - 8pin /1000mm/AWG22 /OT6.0	JBAT2	1	terminal
	Temperature gathering line - 4pin /1000 mm/AWG22 /OT6.0	JNTC1	1	The default four point
handbook	Handbook for BMB02-16S16T2A	V3.1	1	PDF


6 appendix

6.1 RJ45 interface definition

RS485A/RS485B for 485 communication mouth, can cascade; CAN_L/CAN_H/CAN_S to reserve the interface, can be extended display of K1NO/K1COM for normally closed dry contact alarm interface, can cascade.

6.2 acquisition equilibrium board detailed size drawing

Note 1: open hole diagram AUTOCAD format file, please refer to section listed company for

note 2: it is recommended that the panel is installed BMS plate thickness of 1.5 mm above the steel manufacturing, or use the bending process increase strength, prevent the transportation process panel deformation cause BMS plate stress damage.

Shenzhen klclear technology co., Itd.

 $\label{eq:Address: 3 floor, building 15, Anle industrial zone \ , \ Nanshan \ district, \ Shenzhen, \ china$

Http://www.klclear.com Tel: 0755-26654525

Version V3.1

All rights reserved. Content such as is subject to change without prior notice.